Jumat, 26 April 2013

TAKE GOOD CARE of YOUR PROJECTOR to Extend Your PROJECTOR LIFE

 Projectors are extremely fragile and expensive pieces of electronic equipment. By taking proper ccare of your projector you can greatly prolong its lifespan and can make sure that it will perform at its optimal level without fault. Performing regular maintenance on all the various parts of your projector, such as the projector filters, projector lens, projector lamp and projector cabinet will ensure that you are always displaying the best quality image possible to your audience. There are also certain precautions you can take when operating your projector on a daily basis to improve your AV equipment’s life span. 

This Bamboo AV advice article should help you to understand what you need to do to keep your projector tuned up and operating smoothly. Provided below are detailed guides on how to tell when your filters need cleaning and how to clean them, the maintenance cycle for your projector’s lens, how to improve your projector’s operating environment, and a number of useful tips on ways to extend your projector lamp’s life span

FOR NEXT INFORMATION..PLEASE VISIT US TO:


Jaya Plaza,

Jl. Ahmad Yani No. 238 Blok R-5 Bandung 40271, TELP: 022-87245883/72232572, 

FAX : 87245883 


Hp : 082119733308/022-21206869 

www.visualprojekbandung.com 

BANDUNG, SUMEDANG, GARUT, TASIKMALAYA, CIANJUR, PURWAKARTA, SUKABUMI, BEKASI, PADALARANG, CIMAHI,

Kamis, 17 Januari 2013

HOW DLP TECHNOLOGY WORKS




1. The semiconductor that continues to reinvent projection

At the heart of every DLP® projection system is an optical semiconductor known as the DLP® chip, which was invented by Dr. Larry Hornbeck of Texas Instruments in 1987.
The DLP chip is perhaps the world's most sophisticated light switch. It contains a rectangular array of up to 2 million hinge-mounted microscopic mirrors; each of these micromirrors measures less than one-fifth the width of a human hair.
When a DLP chip is coordinated with a digital video or graphic signal, a light source, and a projection lens, its mirrors can reflect a digital image onto a screen or other surface. The DLP chip combined with the advanced electronics that surround it produce stunning images and video that have redefined picture quality.

2. The grayscale image
A DLP chip's micromirrors tilt either toward the light source in a DLP projection system (ON) or away from it (OFF). This creates a light or dark pixel on the projection surface.
 

The bit-streamed image code entering the semiconductor directs each mirror to switch on and off up to several thousand times per second. When a mirror is switched on more frequently than off, it reflects a light gray pixel; a mirror that's switched off more frequently reflects a darker gray pixel.
In this way, the mirrors in a DLP projection system can reflect pixels in up to 1,024 shades of gray to convert the video or graphic signal entering the DLP chip into a highly detailed grayscale image.

3. Adding color
The white light generated by the lamp in a DLP projection system passes through a color filter as it travels to the surface of the DLP chip. This filters the light into a minimum of red, green, and blue, from which a single-chip DLP projection system can create at least 16.7 million colors.
With BrilliantColor™ Technology, additional colors are added including Cyan, Magenta and Yellow to expand the color pallet for even more vibrant color performance. Some DLP projectors offer solid-state illumination which replaces the traditional white lamp. As a result, the light source emits the necessary colors eliminating the color filter. In some DLP systems, a 3-chip architecture is used, particularly for high brightness projectors required for large venue applications such as concerts and movie theaters. These systems are capable of producing no fewer than 35 trillion colors.
The on and off states of each micromirror are coordinated with these basic building blocks of color. For example, a mirror responsible for projecting a purple pixel will only reflect red and blue light to the projection surface; those colors are then blended to see the intended hue in a projected image.

4. Applications and configurations

a) CHIP DLP PROJECTION SYSTEM
Many Data projectors and HDTVS using DLP technology rely on a single chip configuration like the one described above.
 

White light passes through a color filter, causing red, green, blue and even additional primary colors such as yellow cyan, magenta and more to be shone in sequence on the surface of the DLP chip. The switching of the mirrors, and the proportion of time they are 'on' or 'off' is coordinated according to the color shining on them. Then the sequential colors blend to create a full-color image you see on the screen.

b) CHIP DLP PROJECTION SYSTEM
DLP technology enabled projectors for very high brightness applications such as cinema and large venue displays rely on a 3 chip configuration to produce stunning images, whether moving or still.

In a 3 chip system, the white light generated by the lamp passes through a prism that divides it into red, green and blue. Each DLP chip is identified for each of these three colors; the colored light that the micromirrors reflect is then combined and passed through the projection lens to form an image.

Regardless of the application or design, Projectors powered by DLP Technology continue to raise the bar on picture quality and video performance. And it all starts with a small imaging chip with millions of tiny mirrors called DLP that make the picture amazing.


FOR NEXT INFORMATION..PLEASE VISIT US TO:
Jaya Plaza,
Jl. Ahmad Yani No. 238 Blok R-5 Bandung 40271 TELP: 022-87245883/72232572, 
FAX : 87245883 
www.visualprojekbandung.com
Hp : 082119733308/022-21206869 

BANDUNG, SUMEDANG, GARUT, TASIKMALAYA, CIANJUR, PURWAKARTA, SUKABUMI, BEKASI, PADALARANG, CIMAHI,  

SERVICE PROJECTOR INFOCUS NEC BENQ VIEWSONIC ACER SONY MICROVISION

  KAMI SIAP SERVICE PROJECTOR TUAN, DENGAN PENGALAMAN PULUHAN TAHUN, BERBAGAI SPAREPART PROJECTOR PEMASANGAN INSTALASI TINGGAL CALLING BOSSK...